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Motivation: EEG as a Functional Brain Imaging Modality

◦ EEG sensors measure distributed neuronal activity on cortical patches
perpendicular to the sensors

◦ We study the response of a population of neurons – [Learning, memory
formation, task execution, ...]



Resting State EEG and Spectral Features

◦ Power spectrum analysis associates spectral features in a specific
frequency range with bio-behavioral characterizations of brain activity.

◦ We focus on the alpha frequency range whose patterns at rest are thought
to play a role in neural coordination and communication between
distributed brain regions.



EEG Spectral Power (ASD + TD)
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◦ Can we use spectral power dynamics to identify latent
neuro-developmental classes?

◦ Is the uncertain membership (clustering) framework appropriate for this
application?



Uncertain Membership (Clustering) Vs. Mixed Membership
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Mixed Membership and Feature Allocation Models

p(Z)︸︷︷︸
Allocation Matrix

p(Y | Z,θz)︸ ︷︷ ︸
Sampling Model

Probability Models over Multisets - p(Z)

• IBP - (Ghahramani and Griffiths, 2006)
• Exchangeable feature probability function - (Broderick et al., 2013)
• Non-exchangeable schemes - (Benedetto et al., 2020)

Applications

• Topic modeling (Williamson et al., 2010),
• Image analysis (Zhou et al., 2011),
• Inference in tumor heterogeneity (Lee et al., 2015; Xu et al., 2015).



Uncertain Membership (Clustering) vs. Mixed Membership



Functional Data Analysis

• Functional Data Analysis (FDA) focuses on methods used to analyze
sample paths of an underlying continuous stochastic process Y

• Typically we consider:

Yi(t) = fi(t) + ϵi(t); fi(t) ∼ GP{µ(t), C(·, ·)}; ϵi(t) ∼ N(0, σ2
ϵ )

Note: Often the literature on GP focuses on direct (parametrized)
modeling of the covariance function C(·, ·)

Example: C(s, t) = a2 exp{−0.5||s− t||2/ℓ2}

FDA: Estimation of C(s, t) from random samples [Y1(t), . . . , Yn(t)]

• Established literature on flexible priors for C(·, ·) [Yang et al., 2017;
Montagna et al., 2012; Shamshoian et al., 2022]



Functional Clustering (GP Mixtures)

• The FDA literature on clustering is very mature (James and Sugar,
2003; Chiu and Li, 2007) .

• From a Bayesian perspective, assuming there exist K latent GPs

f (k) ∼ GP
(
µ(k), C(k)

)
, k = 1, 2, . . . ,K

Each sample paths fi, (i=1,2,. . . , N), follows a finite mixture of GPs:

p
(
fi | ρ(1:K), µ(1:K), C(1:K)

)
=

K∑
k=1

ρ(k) GP
(
fi | µ(k), C(k)

)
;

where ρ(k) ∈ [0, 1] is the mixing proportion quantifying uncertain
membership to GP (k).



Mixed Membership Functions

• Allowing sample paths (f1, f2, . . . , fN ) mixed membership to K
underlying GPs is conceptually straightforward.

• Introducing path-specific mixed membership probabilities
zi = [Zi1 · · ·ZiK ], with Zik ∈ (0, 1), we define a mixed membership
process as follows

fi | zi =
K∑

k=1

Zikf
(k)

where
∑K

k=1 Zik = 1,

• Typically, we cannot assume that the latent GP(f (k)) are mutually
independent



Functional Clustering vs. Functional Mixed Membership
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Mixed Membership Vs. Local Functional Clustering

Related approaches in the literature:

• Local clustering on random partitions of the evaluation domain -
(Petrone et al., 2009)

• Clustering based on local functional features - (Suarez and Ghosal,
2016)



Mixed Membership Functions

• The proposed sampling model assumes

fi | · · · ∼ GP

∑
k

Zikµ
(k),

∑
k

Z2
ikC

(k) +
∑
k

∑
k′ ̸=k

ZikZik′C(k,k′)


• Model K Gaussian Processes (GPs), f (k)

• K mean functions, µ(k)(t)
• K covariance functions, C(k,k)(s, t)
• K(K−1)

2 cross-covariance functions, C(k,j)(tk, tj)

• These functions are infinite dimensional and computationally
intractable

• We desire a concise and efficient finite representation of the K
Gaussian Processes



Joint Representation of K Gaussian Processes

• We assume f (k) can be represented by a set of uniformly
continuous basis functions.

• Let B(t) is a vector of the P basis functions evaluated at t

• The Multivariate Karhunen-Loève theorem (Happ and Greven,
2018) jointly decomposes K GPs:

f (k)(t) = ν′
kB(t) +

KP∑
m=1

χmϕ′
kmB(t), (1)

where νk ∈ RP , ϕkm ∈ RP , and χm ∼ N (0, 1)

• Using this decomposition, we have:

• µ(k)(t) = ν′
kB(t)

• C(k,j)(tk, tj) =
∑KP

m=1 ϕ
′
kmB(tk)ϕ

′
jmB(tj)



Multivariate Karhunen-Loève Theorem (cont.)

• The Karhunen-Loève theorem typically allows for a reduced
dimensional representation with M ≤ KP components, s.t.

f (k)(t) ≈ ν′
kB(t) +

M∑
m=1

χmϕ′
kmB(t), (2)

• Number of parameters needed to model the covariance structure:

• Multivariate Karhunen-Loève: O(KPM)
• Näıve : O(K2P 2)



Effects of the Cross-Covariance Function

Cov(X,Y )(s, t) = Cov (X(s), Y (t))



Relation to Other PMMs (Multivariate Analysis)
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• The proposed representation is not unique and builds on several
related ideas in multivariate analysis (Heller et Al., 2008), (Griffiths
and Ghahramani, 2011), (Broderick et Al. 2013).



Finite Dimensional Margins

• Zik ∈ (0, 1) −→ mixed membership probability of path i to GP (k).

• Using the multivariate KL construction, we obtain:

yi(t)|Θ ∼N

 K∑
k=1

Zik

ν′
kB(t) +

M∑
m=1

χimϕ′
kmB(t)︸ ︷︷ ︸

 , σ2

 (3)

f (k)(t)

• Integrating over χi yields

yi(ti)|Θ−χ ∼N

 K∑
k=1

Zik S
′(ti)νk︸ ︷︷ ︸,

K∑
k=1

K∑
j=1

ZikZij

S′(ti)

M∑
m=1

(
ϕkmϕ′

jm

)
S(ti)︸ ︷︷ ︸

+ σ2Ini


(4)

µ(k)(ti) C(k,j)(ti, ti)



Prior Distributions

• The ϕ parameters construct scaled eigenfunctions of the
covariance operator

• Mutually orthogonal
• Magnitude of the scaled eigenfunctions should decrease

• Multiplicative gamma process shrinkage prior
(Bhattacharya and Dunson, 2011)

ϕkpm|γkpm, τ̃mk ∼ N
(
0, γ−1

kpmτ̃−1
mk

)
,

γkpm ∼ Γ (νγ/2, νγ/2) , τ̃mk =

m∏
n=1

δnk,

δ1k ∼ Γ(a1k, 1), δjk ∼ Γ(a2k, 1), a1k ∼ Γ(α1, β1), a2k ∼ Γ(α2, β2)



Posterior Distributions

• Let Σjk :=
∑KP

p=1

(
ϕjpϕ

′
kp

)
and

ω :=
{
ν1, . . . ,νK ,Σ11, . . . ,Σ1K , . . . ,ΣKK , σ2

}
.

• The parameters in ω ∈ Ω completely specify the mean and
covariance structure of our model. We will denote the true set of
parameters as ω0

• Assumptions:

1. Y1, . . . ,Yn are observed on a grid of R points in the
domain, {t1, . . . , tR}

2. The variables Zik are fixed and known (not-random)
3. σ2

0 > 0

• Consider the fully saturated model (M = KP). Under these
assumptions, the posterior distribution is weakly consistent at
ω0 ∈ Ω



Posterior Simulation

• Posterior simulation is conducted by using
Metropolis-within-Gibbs sampling

• Implemented in RCPP

• Tempered transitions are utilized to move across areas of low
posterior probability

• Post-processing is conducted to help with identifiability and the
interpretability of the parameters



Operating Characteristics on Engineered Data
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Selecting the Number of Features
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Case Study: Peak Alpha Frequency (TD and ASD)

• Autism spectrum disorder (ASD) is a term
used to describe individuals with a
collection of social communication deficits
and restricted or repetitive sensory-motor
behaviors

• This case study contains
electroencephalogram (EEG) data for 39
typically developing (TD) children and 58
children with ASD between the ages of 2
and 12 years old

• We fit a 2 functional feature mixed
membership model on data from the T8
electrode



EEG Case Study Data
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Figure: EEG data from the T8 electrode for 20 individuals (ASD and
TD)



EEG Case Study Data (cont.)
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Figure: Posterior median and 95% credible (pointwise credible interval
in dark gray and simultaneous credible interval in light gray) of the
mean function for each latent functional feature.



EEG Case Study (cont.)

Figure: Posterior estimates of the covariance functions (From left to
right: covariance of feature 1, covariance of feature 2, cross-covariance
between features 1 and 2)



EEG Case Study (cont.)
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• Children with an TD clinical diagnosis are highly likely to load
on the second functional feature, whereas children with ASD
exhibit a higher level of heterogeneity



Analysis of Multi-Channel EEG Data

• In the previous case study, we only used
the T8 electrode and discarded the
information from the 24 other electrodes

• For this case study, we will model all
electrodes using a functional model,
assuming T ⊂ R3

• Two of the indices will contain the
spatial location of the electrodes

• The third index will contain the
frequency domain



Analysis of Multi-Channel EEG Data (cont.)
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Figure: Posterior estimates of the means of the two functional features
viewed at specific electrodes of interest.



Analysis of Multi-Channel EEG Data (cont.)

Figure: Variance of electrodes at 6 Hz (left) and 10 Hz (right)

• For the second functional feature, we can see that there is
high heterogeneity around the T8 electrode at 6 Hz



Summary

• Functional Mixed Membership Models are likely important in BioX
applications

• Multivariate KL constructions allow for efficient representation and
dimension reduction of multivariate GPs

• Some work is needed for dimension selection and theoretical
guarantees on latent membership

• Some work is needed to account for covariate information

• In our applications, results are robust to increasing dimensionality
(multi-channel analyses)



Thank You!

R Packages

HFM Multivariate FDA https://github.com/Qian-Li/HFM

BayesFMMM Funct. Mixed Membership Models https://github.com/ndmarco/BayesFMMM
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